Geometry
- geometry_initialization.circle(x)[source]
Computes the signed distance from a point to a circle.
This function calculates the signed distance from a point x = (x_0, x_1) to a circle centered at (1, 0.5) with radius 0.3. The function returns a negative value if the point is inside the circle and a positive value if it is outside.
\[\text{distance}(x) = -\left(\sqrt{(x_0 - 1)^2 + (x_1 - 0.5)^2} - 0.3\right)\]- Parameters:
x (tuple) – A tuple representing the point coordinates (x_0, x_1).
- Returns:
The signed distance from the point to the circle.
- Return type:
float
- geometry_initialization.level_set(x, parameters)[source]
Computes a 2D level set function based on cosine functions.
This function returns a level set value based on a combination of cosine functions depending on the coordinates of the input point x = (x_0, x_1) and a parameter lx.
\[\text{level set}(x) = -\cos\left(\frac{6\pi x_0}{l_x}\right)\cos(4\pi x_1) - 0.6\]- Parameters:
x (tuple) – A tuple representing the point coordinates (x_0, x_1).
parameters (object with attribute lx.) – The parameters object containing the domain length lx.
- Returns:
The computed level set value.
- Return type:
float
- geometry_initialization.level_set_3D(x, parameters)[source]
Computes a 3D level set function based on cosine functions.
This function returns a level set value based on a combination of cosine functions depending on the coordinates of the input point x = (x_0, x_1, x_2) and a parameter lx, ‘ly’ and ‘lz’, the dimensions of the box containing \(\Omega\).
\[\text{level set}(x) = -\cos\left(\frac{6\pi x_0}{l_x}\right)\cos(4\pi x_1)\cos(4\pi x_2) - 0.6\]- Parameters:
x (tuple) – A tuple representing the point coordinates (x_0, x_1, x_2).
parameters (object with attribute lx.) – The parameters object containing the domain length lx, ‘ly’ and ‘lz’.
- Returns:
The computed level set value.
- Return type:
float